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Universal finite-size scaling behavior and universal dynamical scaling behavior
of absorbing phase transitions with a conserved field
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We analyze numerically three different models exhibiting an absorbing phase transition. We focus on the
finite-size scaling as well as the dynamical scaling behavior. An accurate determination of several critical
exponents allows one to validate certain hyperscaling relations. Using these hyperscaling relations it is possible
to express the avalanche exponents of a self-organized critical system in terms of the ordinary exponents of a
continuous absorbing phase transition.
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I. INTRODUCTION

Absorbing phase transitions~APT! are a particular class
of nonequilibrium phase transitions occurring in physic
biological, as well as chemical systems~see, for instance
Ref. @1#!. Transitions to absorbing states are of particu
interest since they have no equilibrium counterparts and m
occur even in one-dimensional systems. A characteristic
ture of absorbing phase transitions is the competition
tween the proliferation and annihilation of a certain entityA,
e.g., particles, energy units, viruses, and molecules in c
lytic reactions, etc. It is essential that no spontaneous
ation of such quantities takes place. At a critical value of
proliferation-annihilation rate the densityr(A) vanishes and
the system is trapped forever in the absorbing stater(A)
50.

Directed percolation is recognized as a paradigmatic
ample of absorbing phase transitions. This is reflected by
universality hypothesis of Janssen and Grassberger that m
els which exhibit a continuous phase transition to a sin
absorbing state generally belong to the universality clas
directed percolation@2,3#. Different universality classes oc
cur, for instance, in the presence of additional symmetries
particular, particle conservation may lead to the different u
versality class of absorbing phase transitions with a c
served field as pointed out in Ref.@4#. For instance, the con
served lattice gas~CLG! @4#, the conserved threshold transf
process~CTTP! @4#, the well known Manna sandpile mode
@5#, as well as a reaction-diffusion model@6# belong to this
universality class@7#. Note that this universality class is o
particular interest since the corresponding systems con
the critical behavior of the absorbing phase transition w
the critical steady state of self-organized critical~SOC! sys-
tems@8#. Actually, SOC sandpile models can be conside
as driven-dissipative versions of~closed! systems exhibiting
absorbing phase transitions@9#.

In this paper we consider the universal finite-size scal
as well as the universal dynamical scaling behavior of
CLG model, the CTTP, and the Manna model. First, we
troduce a method that allows one to study finite-size effe
in the steady state. In contrast to previous attempts to m
1063-651X/2003/68~5!/056102~11!/$20.00 68 0561
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sure finite-size effects, our method is well defined. Furth
more, it can be applied immediately to other classes of
sorbing phase transitions. Second, we consider the act
spreading of a single active seed. The corresponding spr
ing exponents are naturally connected to the avalanche
ponents of SOC systems@10#. In particular, we discuss cer
tain hyperscaling laws relating the spreading exponents
the steady-state exponents of absorbing phase transit
This allows us to express the SOC avalanche exponen
terms of the exponents of the corresponding absorbing ph
transition~e.g., the exponents of the order parameter and
correlation length exponent!. Thus the critical state of SOC
systems is closely related to the critical properties of an
dinary second-order phase transition.

II. MODELS

The first considered model is the CLG@4#, which is a
stochastic variant of a model introduced by Jensen@11#. In
the CLG model lattice sites may be empty or occupied
one particle. In order to mimic a repulsive interaction a giv
particle is considered as active if at least one of its neighb
ing sites on the lattice is occupied by another particle. If
neighboring sites are empty, the particle remains inact
Active particles are moved in the next update step to one
their empty nearest neighbor sites, selected at random.

The second model is the so-called CTTP@4#, a modifica-
tion of the threshold transfer process introduced in Ref.@12#.
Here, lattice sites may be empty, occupied by one particle
occupied by two particles. Empty and single occupied s
are considered as inactive, whereas double occupied la
sites are considered as active. In the latter case one trie
transfer both particles of a given active site to randomly c
sen empty or single occupied nearest neighbor sites.

The third model is a modified version of the Manna san
pile model@5#, the so-called fixed-energy Manna model@9#.
In contrast to the CTTP, the Manna model allows for unlim
ited particle occupation of lattice sites. We use in our inv
tigations the original Manna relaxation rules, i.e., lattice si
which are occupied by at least two particles are considere
active and all particles are moved to the neighboring s
selected at random.
©2003 The American Physical Society02-1
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The three models are sketched in Fig. 1. We use in
cases periodic boundary conditions, i.e., closed systems
considered and the number of particles is conserved. In
simulations~see Refs.@13,14# for details! we start from a
random distribution of particles. All models reach after
transient regime a steady state which is characterized by
average density of active sitesra. The densityra is the order
parameter and the particle densityr is the control paramete
of the absorbing phase transition, i.e., the order param
vanishes at the critical densityrc according tora}drb, with
the reduced control parameterdr5r/rc21. In addition
to the order parameter we consider its fluctuationsDra.
Approaching the transition point from above~dr.0! the
fluctuations diverge according toDra}dr2g8 ~see Refs.
@13,14#!. Below the critical density~in the absorbing state!
the order parameter as well as its fluctuations are zero in
steady state.

Similar to equilibrium phase transitions it is possible
the case of absorbing phase transitions to apply an exte
field h which is conjugated to the order parameter, i.e.,
field causes a spontaneous creation of active particles~see,
for instance, Ref.@1#!. A realization of the external field fo
absorbing phase transitions with a conserved field was de
oped in Ref.@13# where the external field triggers move
ments of inactive particles which may be activated in t
way. At the critical densityrc the order parameter and it
fluctuations scale asra}hb/s andDra}h2g8/s, respectively.

It was shown recently that the order parameter and
fluctuations obey in the steady state the scaling forms@7#

ra~dr,h!;l2bR̃~ardrl,ahhls!, ~1!

aDDra~dr,h!;lg8D̃~ardrl,ahhls!. ~2!

The universal scaling functionsR̃(x,y) and D̃(x,y) are the
same for all systems belonging to a given universality cl
whereas all nonuniversal system-dependent features~e.g., the
lattice structure and the update scheme! are contained in the
so-called nonuniversal metric factorsar , ah , and aD @15#.
The universal scaling functions are normed by the conditi

FIG. 1. Sketch of the dynamics of the three considered mod
Filled circles mark active particles, whereas nonactive particles
marked by open circles. The arrows denote how the active part
are ~probably! moved in the next update step. In the case of
one-dimensional CLG model the particle transfer is determinis
For the one-dimensional CTTP, stochastic~left! as well as determin-
istic ~right! particle movements may occur. Only the on
dimensional Manna model is characterized by a full stochastic
namics inD51.
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R̃(1,0)5R̃(0,1)5D̃(0,1)51 and the nonuniversal metri
factors can be determined from the amplitudes of

ra~dr,h50!;~ardr!b, ~3!

ra~dr50,h!;~ahh!b/s, ~4!

aDDra~dr50,h!;~ahh!2g8/s. ~5!

These equations are obtained by choosing in the sca
forms @Eqs. ~1! and ~2!# ardrl51 andahhls51, respec-
tively.

A recently performed analysis of the universal scali
functions as well as of the critical exponents forD>2 @7#
confirms the conjecture of Ref.@4# that the CLG model, the
CTTP, and the Manna model belong to the same universa
class. The situation is more complicated in one-dimensio
systems where a splitting of the universality class occu
The reason for the nonuniversal behavior is that the dim
sional reduction changes the stochastic character of the
namics~see Fig. 1!. For instance, the CLG model is chara
terized by deterministic toppling rules inD51 and exhibits a
trivial phase transition withb51 andrc51/2 ~see also Ref.
22 in Ref. @4#!. Due to the trivial behavior of the one
dimensional CLG model we consider in this work the tw
and the three-dimensional CLG model only.

In the case of the CTTP we observe that roughly 40%
the relaxation events are deterministic. Furthermore, a
turbation that is triggered by the external field performs
simple random walk~see Fig. 2!. This pathologic behavior is
completely different from the behavior of the on
dimensional Manna model that is characterized by a p
stochastic relaxation of active particles to the next neighb
More than the other models the Manna model is therefore
paradigm of the universality class of absorbing phase tra

s.
re
es
e
.

y-
FIG. 2. Sketch of the dynamics of the one-dimensional CT

At update stept an active site is triggered by the external field in
cluster of inactive sites. The arrows denote how the active parti
~full circles! are moved in the next update step. Due to the dyna
rules of the CTTP only two different relaxation processes~selected
randomly! occur: both particles are moved to the same empty site
both particles are moved to two adjacent sites. Thus, the dyna
of the one-dimensional CTTP is characterized by a trivial rand
walk of the perturbation. This random walk proceeds until it reac
the boundary of a cluster.
2-2
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tions with a conserved field. In the following we will ca
that class the Manna universality class since universa
classes are often labeled by the simplest model belongin
them.

The universality splitting of the one-dimensional syste
is in full agreement with the universality hypothesis of san
pile models@16#. According to this conjecture the universa
ity classes of sandpile models are determined by the way
particles are distributed to the next neighbors~deterministic,
stochastic, directed, undirected, etc.!. Obviously, the Manna
universality class is characterized by a stochastic and u
rected distribution of particles.

III. STEADY-STATE FINITE-SIZE SCALING

Similar to equilibrium critical phenomena we assume t
the system sizeL enters the scaling forms@Eqs.~1! and~2!#
as an additional scaling field, i.e.,

ra~dr,h,L !;l2bR̃pbc~ardrl,ahhls,aLLl2n'!,

aDDra~dr,h,L !;lg8D̃pbc~ardrl,ahhls,aLLl2n'!,
~6!

where the exponentn' describes the divergence of the sp
tial correlation length, i.e.,j'}dr2n'. Note that the univer-
sal scaling functions depend now on the particular choice
the boundary conditions, the system shape, etc.@15#.
Throughout this work we use in all dimensions hyper cu
lattices with periodic boundary conditions~pbc!. However,
the universal scaling functions@Eqs. ~1! and ~2!# are recov-
ered in the thermodynamic limit, e.g.,

R̃pbc~x,y,`!5R̃~x,y!. ~7!

In addition to the order parameter and its fluctuations
consider the fourth-order cumulantQ, which is defined as
~see, for instance, Ref.@17#!

Q512
^ra

4&

3^ra
2&2

. ~8!

For nonvanishing order-parameter the cumulant tends tQ
52/3 in the thermodynamic limit. In the case of a zero ord
parameter the cumulant vanishes if the order paramete
characterized by a Gaussian distribution symmetrically d
tributed around zero. The latter case is observed in equ
rium systems, e.g., the Ising model forT.Tc . In the case of
absorbing phase transitions the order parameter is n
negative per definition. Thus the order parameter is cha
terized by a nontrivial distribution close to criticality and th
above scenario does not apply.

Nevertheless, one expects that the cumulant obeys
scaling form

Q~dr,h,L !;Q̃pbc~ardrl,ahhls,aLLl2n'!. ~9!

Notice that no metric factoraQ is needed since the cumula
is already dimensionless. ChoosingaLLl2n'51 we get for
zero field
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Q~0,0,L !5Q~dr,0,L !udr50

;Q̃pbc~ardr~aLL !2n',0,1!udr505Q̃pbc~0,0,1!,

~10!

which is obviously universal. The universal valu
Q̃pbc(0,0,1) corresponds to an intersection point if one pl
Q as a function ofr for various system sizesL. Thus it is
possible to determine the critical valuerc from the common
intersection point. This cumulant intersection method is v
useful and was applied in numerous works~see, for instance
Ref. @17# and references therein!.

As usual finite-size effects have to be taken into accoun
the correlation length is of the order of the system size
feature of these finite-size effects is that a given system m
pass within the simulations from one phase to the other. T
behavior is caused by critical fluctuations, i.e., approach
the transition point the order parameter vanishes wherea
fluctuations diverge. But in contrast to common second-or
phase transitions the situation is drastically different in
case of absorbing phase transitions. Approaching the tra
tion point the correlation lengthj' increases and as soon a
j' is of the order ofL the system may pass to an absorbi
state and is trapped forever. In addition to the absorb
phase (̂ra

k&50 for dr,0! the steady-state order paramet
and its higher moments vanish (^ra

k&L50) even in a small
vicinity above the critical point. Thus in the case of abso
ing phase transitions it is impossible to consider finite-s
effects of steady-state quantities around the critical point

In order to bypass this problem it was suggested~see, for
instance, Ref.@18#! that we consider metastable~ms! or
quasisteady-state values of the order parameter and its h
moments^ra

k&L,ms. This is shown in Fig. 3 for the orde
parameter of the two-dimensional CTTP close to the tran
tion point. After a short transient regime the system reach
metastable state where it can spend a certain time un

FIG. 3. The decay of the order parameter close to criticality
the two-dimensional CTTP. After a so-called metastable regime
system passes to the absorbing phase. The inset displays th
clear saturation of the order parameter could be observed.
2-3
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finally enters an absorbing state. In the metastable phas
order parameter is expected to fluctuate around a well
fined average valuêra&L,ms which is used for the finite-size
scaling analysis. This method was applied in previous wo
~e.g., Refs.@4,9,18# and the results sound mostly valid.

Nevertheless this method can be questioned. First, the
no well defined average value of the order parameter in
metastable regime. This can be seen in the inset of Fi
where we scrutinize the data. No clear saturation of the o
parameter can be observed. Second, the method is quit
efficient. In the case of the data presented in Fig. 3 we u
53107 different initial configurations forL532 to get a suf-
ficiently averaged estimate of the order parameter. Altho
roughly 1011 lattice updates (tmax'2000) were performed
no clear saturation could be observed. Thus reliable data
larger lattice sizes (L564,128,256, . . . ), which are required
for an appropriate finite-size scaling analysis, cannot be
tained within moderate computer times. Third and final,
rigorous proof exists that the metastable order-parameter
ments^ra

k&L,ms scale in the same way as the correspond
steady-state order-parameter moments.

In contrast to the consideration of metastable phases
choose a different method in order to study finite-size effe
in the steady state. In our simulations we measure the o
parameter at the critical density (dr50) as a function of the
conjugated fieldh for various system sizes. Due to the exte
nal field the system cannot be trapped forever in the abs
ing phase. Therefore, steady-state quantities are availabl
all densities. In Fig. 4 we present the order parameter an
fluctuations for the two-dimensional CTTP model. T
finite-size effects, i.e., the deviations from the behavior
the ‘‘infinite’’ system (L@j') can be clearly seen. Note tha
the data forL532 are averaged over 33107 lattice updates
and we obtain smooth curves of the order parameter, its fl
tuations, as well as of the cumulant. Thus, the numer
effort of this method is significantly smaller than the abo

FIG. 4. The density of active sitesra as a function of the exter
nal field for various system sizesL. The inset displays the corre
sponding order-parameter fluctuations. The dashed lines corres
to the asymptotic behavior of the infinite systems@Eqs.~4! and~5!#.
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discussed analysis of the metastable regime.
According to the above scaling laws@Eqs.~6! and~9!# the

finite-size scaling forms are given by

ra~0,h,L !;~aLL !2b/n'R̃pbc„0,ahh~aLL !s/n',1…,

aDDra~0,h,L !;~aLL !g8/n'D̃pbc„0,ahh~aLL !s/n',1…,

Q~0,h,L !;Q̃pbc„0,ahh~aLL !s/n',1…. ~11!

For the sake of convenience we norm the universal sca
function Q̃pbc by the condition

Q̃pbc~0,1,1!50. ~12!

Since the metric factorah is known from previous simula-
tions @7# @via Eq. ~4!# the above condition can be used
determine the metric factoraL . Taking into account that the
correlation length scales at criticality as

a'j';~ahh!2n' /s, ~13!

we find that Eq.~12! implies that the universal functionQ̃pbc
is positive for aLL.a'j' and negative foraLL,a'j' .
Note that in the case of equilibrium phase transitions E
~12! is useless since the cumulant is usually positive.

In Figs. 5–7 we present the universal finite-size scal
analysis of the CLG model, the Manna model, and the CT
for D51,2,3. Since the exponentsb and s were already
determined in previous works@7,13,14# we just vary the cor-
relation length exponentn' in order to produce data col
lapses. The value of the nonuniversal metric factoraL is

nd

FIG. 5. The universal finite-size scaling analysis of the ord
parameterra, the fluctuationsDra, as well as of the cumulantQ
for the one-dimensional CTTP and the one-dimensional Ma
model. The long-dashed lines correspond to the power-law be
iors of the infinite system@Eqs. ~4! and ~5!# and to the cumulant
limit 2/3, respectively. The data are obtained from simulations
system sizesLP$2048,4096,8192% where up to 1010 lattice update
steps are performed.
2-4
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determined via Eq.~12!. We observe good data collapses f
n'50.79960.014 for D52 and n'50.59360.013 for D
53. The data collapses are quite sensitive for variations
the exponents. Thus the quality of the corresponding d
collapses are used to estimate the error bars. The value
the exponents as well as of the nonuniversal metric fac
are listed in Tables I and II.

FIG. 6. The universal finite-size scaling analysis of the or
parameterra, the fluctuationsDra, as well as of the cumulantQ
for the two-dimensional models. The long-dashed lines corresp
to the power-law behaviors of the infinite system@Eqs.~4! and~5!#
and to the cumulant limit 2/3, respectively. The data are obtai
from simulations of system sizesLP$64,128,256% where up to
53107 lattice update steps are performed.

FIG. 7. The universal finite-size scaling analysis of the or
parameterra, the fluctuationsDra, as well as of the cumulantQ
for the three-dimensional models. The long-dashed lines corresp
to the power-law behaviors of the infinite system@Eqs.~4! and~5!#
and to the cumulant limit 2/3, respectively. The data are obtai
from simulations of system sizesLP$16,32,64% where up to
53107 lattice update steps are performed.
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TABLE I. The critical exponents of the considered models b
low the upper critical dimensionDc54. The data of the exponent
b ands are obtained from Ref.@14#. The finite-size scaling analysi
yields the values ofn' andg8, whereas the exponentsa, d, u, and
z are obtained from activity spreading~see text!. The values ofb8
andn' are determined via scaling laws. In particular, the values
n i are in good agreement with those of direct measurements o
order-parameter persistence distribution@27#. In the case of the one
dimensional models we observe a splitting of the universality cla

D51 D52 D53

a 0.14160.024 0.41960.015 0.74560.017
d 0.17060.025 0.51060.020 0.76560.025
u 0.35060.030 0.31060.030 0.14060.030
z 1.39360.037 1.53360.024 1.82360.023
b 0.38260.019 0.63960.009 0.84060.012
b8 0.31960.052Manna 0.62460.029 0.82760.034
s 2.71060.040Manna 2.22960.032 2.06960.043

1.77060.058CTTP

n' 1.34760.091Manna 0.79960.014 0.59360.013
1.76060.060CTTP

n i 1.87660.135Manna 1.22560.029 1.08160.027
2.45260.106CTTP

g8 0.55060.040Manna 0.36760.019 0.15260.017
0.67060.040CTTP

TABLE II. The nonuniversal metric factors of the considere
models. The uncertainty of the metric factors is less than 5%.

D51 D52 D53

CTTP
ar 0.607 0.341 0.384
ah 0.220 0.013 0.093
aD 187.7 45.42 24.51
aL 1014.0 4.617 2.173
at 1379.0 24.90 4.239
aP 0.107 0.078 0.094
aN 6.062 2.818 1.069
CLG
ar 0.509 0.434
ah 0.062 0.391
aD 9.241 8.881
aL 2.107 1.441
at 11.22 3.140
aP 0.157 0.183
aN 1.249 0.569
Manna
ar 0.662 0.211 0.311
ah 7.5231025 0.007 0.074
aD 588.9 78.56 32.24
aL 205.9 6.011 2.367
at 7.993104 35.53 4.824
aP 0.063 0.059 0.089
aN 64.02 3.600 1.229
2-5
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In the case of the one-dimensional Manna model and
one-dimensional CTTP we observe the expected splitting
the universality class. The correlation length exponentn' ,
the field exponents, as well as the scaling functions diffe
clearly ~see Table I and Fig. 5!. Furthermore, the value ofn'

for the Manna model,n'51.34760.091, differs clearly
from n'51.8060.01 obtained in a previous work includin
a finite-size scaling analysis of metastable states@19#.

Despite this splitting of universality we observe that t
fourth-order cumulant tends for all models in all dimensio
to infinity if one approaches the transition point, i.e.,

Q̃pbc~0,x,1!→2` for x→0. ~14!

This behavior is caused by the vanishing steady-state fl
tuations@see Eq.~8!#. Thus, we assume that the diverge
fourth-order cumulant is a characteristic feature of all a
sorbing phase transitions, independent of the considered
tice structure as well as of the particularly considered univ
sality class. Preliminary simulations for directed percolat
support this conjecture and will be published elsewhere.

IV. DYNAMICAL SCALING BEHAVIOR

A. Homogeneous particle source

In the following we investigate the dynamical scaling b
havior in the vicinity of the absorbing phase transition. Fir
we consider how the order parameterra decays, starting the
simulations from a random distribution of particles~so-called
homogeneous particle source!. Above the transition point the
density of active sites decreases in time and tends to
steady-state value~despite of finite-size effects as discuss
above!. Below the transition point the density of active sit
decreases exponentially to zero. At the critical point the
der parameter decays algebraically according to

ra;~att !
2a, ~15!

whereat denotes a corresponding nonuniversal metric fac
A finite system size limits this power-law behavior and o
expects that the order parameter obeys at criticality the s
ing ansatz

ra~L,t !;l2an iR̃pbc8 ~attl
2n i,aLLl2n'!, ~16!

where we have to distinguish the universal functionsR̃8 and
R̃. For the sake of simplicity we chooseR̃8(1,̀ )51. Setting
aLLl2n'51 one gets the finite-size scaling~FSS! form

ra~L,t !;L2azR̃pbc8 „att~aLL !2z,1…, ~17!

where z5n i /n' denotes the dynamical exponent as usu
Finite-size effects have to be taken into account forO(t)
5tFSS, with

tFSS5at
21~aLL !z. ~18!

For t!tFSS the scaling function obeys the power la
R̃pbc8 (x,1);x2a, whereasR̃pbc8 (x,1) decays exponentially fo
x@1, i.e., t@tFSS.
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According to the above scaling form@Eq. ~17!# we plot in
Figs. 8–10 the rescaled order parameter as a function o
rescaled time. We observe good data collapses fora50.419
60.015,z51.53360.024 forD52 anda50.74560.017,z
51.82360.023 for D53. These values are in agreeme
with those of previous simulations@4#. In the case of the
one-dimensional models we observe that the CTTP and
Manna model are both characterized bya50.14160.024 and
z51.39360.037, but the corresponding scaling curves
both models differ slightly. It is possible that this indicates

FIG. 8. The dynamical scaling analysis for the one-dimensio
CTTP and the Manna model. The long-dashed lines correspon
the power-law behaviors of the infinite systems@Eqs.~15!, ~21!, and
~22!#. System sizes fromL5512 up toL58192 are considered an
the data are averaged over at least 105 different initial natural con-
figurations~see text!.

FIG. 9. The dynamical scaling analysis for the two-dimensio
models. The long-dashed lines correspond to the power-law be
iors of the infinite systems@Eqs.~15!, ~21!, and~22!#. System sizes
from L564 up toL5512 are considered and the data are avera
over at least 23106 different initial natural configurations~see
text!.
2-6
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universality splitting similar to the steady-state scaling b
havior.

B. Localized particle source

In addition to a homogeneously distributed source of
tive sites one usually considers the activity spreading ge
ated from a single active seed@20#. In this case it is custom
ary to examine the survival probabilityPa(t) that the system
is still active aftert update steps. Furthermore, one inves
gates how the number of active sitesNa(t) increases in time.
At criticality the survival probability as well as the averag
number of active sites are expected to scale as

aPPa~L,t !;l2dn iP̃pbc~attl
2n i,aLLl2n'!, ~19!

aNNa~L,t !;lun iÑpbc~attl
2n i,aLLl2n'!. ~20!

The universal functions are normed byP̃(1,̀ )51 and
Ñ(1,̀ )51 and we find in the thermodynamic limit

aPPa;~att !
2d, ~21!

aNNa;~att !
u. ~22!

The finite-size scaling forms are obtained by sett
aLLl2n'51, yielding

aPPa~L,t !;L2dzP̃pbc„att~aLL !2z,1…, ~23!

aNNa~L,t !;LuzÑpbc„att~aLL !2z,1…. ~24!

Again the scaling functionsP̃pbc and Ñpbc decay exponen-
tially for t@tFSS, whereas they exhibit an algebraic behav
for t!tFSS.

FIG. 10. The dynamical scaling analysis for the thre
dimensional models. The long-dashed lines correspond to
power-law behaviors of the infinite systems@Eqs. ~15!, ~21!, and
~22!#. System sizes fromL516 up toL5128 are considered an
the data are averaged over at least 53106 different initial natural
configurations~see text!.
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Since the absorbing state is nontrivial, one has to inve
gate the spreading activity at the so-called natural den
~see, for instance, Ref.@18#!. For each considered model a
absorbing state atrc is prepared and a particle is moved to
randomly selected site in order to create one active seed
obtain for all dimensions convincing data collapses wh
are shown in the insets of the Figs. 8–10. The values of
exponents agree with those of previous works@4# and are
listed together with the nonuniversal metric factors in Tab
I and II. In summary activity spreading from a localized se
is characterized for all three models by the same unive
scaling functionsP̃ and Ñ.

The activity spreading of APT with a conserved field
closely connected to avalanche processes in SOC sys
@9#. In particular, the Manna model is a paradigmatic e
ample of a class of SOC systems, the so-called sand
models. The SOC version and the APT version of the Man
model are characterized by the same~microscopic! dynamic
rules but the boundary conditions differ. Closed bound
conditions lead to a globally conserved particle density in
case of absorbing phase transitions. But sandpile models
per definition driven-dissipative systems where partic
~sand grains! are injected into the system and dissipat
through open boundaries. The self-organization of SOC s
tems corresponds to the fact that they approach, without
external fine tuning, the critical state@r(t)→rc# in the in-
finitesimally slow driving limit ~so-called separation of time
scales, see Ref.@21#!. In the critical state the external drivin
triggers ~scale invariant! avalanchelike relaxation events
These avalanche processes are described by certain cr
exponents which can be derived from the spreading ex
nents d, u, and z @9,10#. In particular, the avalanches ar
characterized by several quantities~see, for instance, Refs
@16,22#!, e.g., the sizes ~number of elementary relaxatio
events!, the areaa ~number of distinct toppled sites!, the time
t ~number of parallel updates until the configuration
stable!, as well as the radius exponentr ~radius of gyration!.
In the critical steady state the corresponding probability d
tributions decay algebraically,

Px}x2tx, ~25!

characterized by the avalanche exponentstx with x
P$s,a,t,r %. Assuming that the size, area, etc., scale a
power of each other,

x}x8gxx8, ~26!

one obtains the scaling relations

gxx85
tx821

tx21
. ~27!

The exponentg tr equals the dynamical exponentz, the ex-
ponentgar corresponds to the fractal dimension of the av
lanches, and the exponentgsa indicates whether multiple
toppling events are relevant (gsa.1) or irrelevant (gsa
51).

-
e
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These avalanche exponents are connected to the spre
exponentsd, u, andz ~see, for instance, Ref.@10#!. First, the
survival probabilityPa(t) is simply given by the integrated
avalanche duration

Pa~ t !5 (
t85t

`

Pt~ t8! ~28!

yielding

t t511d. ~29!

Sinceg tr5z the radius exponent is given by

t r511zd. ~30!

Taking into account that the avalanches of the Manna mo
are compact (gar5D) below the upper critical dimensio
Dc54 @22,23# we find

ta511
zd

D
. ~31!

Finally, the number of topplingsst for an avalanche that is
active at timet equals the integrated numbers of active sit
i.e.,

stPa~ t !5 (
t850

t

Na~ t8!, ~32!

leading to@10#

ts511
d

11u1d
. ~33!

Thus, the avalanche exponents of the Manna model are n
rally related to the spreading exponents of the absorb
phase transition. In Fig. 11 we compare our results w
those of SOC simulations of the Manna model. The d
show that the above scaling relations@Eqs. ~29!–~33!# are
fulfilled.

V. DISCUSSION

In this section we check several scaling relations. Due
the pathological behavior of the one-dimensional CTTP
use the corresponding values of the Manna model for
consideration. At the beginning we check the scaling relat

g85Dn'22b ~34!

which can be easily derived from the scaling form of t
order-parameter histogram~see, for instance, Ref.@18#!. The
corresponding data are plotted in Fig. 12. As can be seen
above scaling relation is fulfilled within the error bars.

Taking into consideration that a weak external field m
trigger spreading events one finds that the field exponen
given by @1#

s5Dn'1n i2n id. ~35!
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In Fig. 13 we check this scaling law. As can be seen it
fulfilled within the error bars.

Next, we consider the hyperscaling relation

u5
D

z
2

b

n i
2d. ~36!

This scaling relation can be derived if one assumes that
steady-state scaling forms and the dynamical scaling fo
can be combined to

FIG. 11. The avalanche exponents of the Manna model in v
ous dimensions. In order to avoid overlaps the exponents
slightly shifted. The avalanche exponents of the SOC version of
Manna model~left! are obtained from Ref.@26# for D51 and from
Refs.@23,25# for D52,3. Using the Eqs.~29!–~33! we obtained the
avalanche exponents~middle! from the spreading exponentsd, u,
andz. Using certain hyperscaling relations it is possible to expr
the avalanche exponents~right! in terms of the exponents of th
continuous absorbing phase transition, see Eqs.~54!–~57!.

FIG. 12. Test of the scaling relationsg85Dn'22b, a5b/n i
~inset!, as well asd5b/n i ~inset!.
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Na~dr,h,L,t,ra,0!5LDra~dr,h,L,t,ra,0!

;LDl2bR̃pbc~ardrl,ahhls,

aLLl2n',attl
2n i,a0ra,0l

Dn'2n id!.

~37!

Here the initial density of active sitesra,0 appears as an
additional scaling field~see, for instance, Ref.@1# and refer-
ences therein! and the scaling function behaves asympto
cally as

R̃pbc~0,0,̀ ,1,x!;H x for x!1

const forx@1.
~38!

Starting at criticality from a low density of active sites~e.g.,
several seeds! the number of active sites increases asNa
}tu until it reaches a maximum and crosses over to the
pected asymptotic decayra}t2a. The crossover time is de
termined by

O„a0ra,0~attco!
D/z2d

…51, ~39!

which corresponds to a merging of the survived~and former
separated! clusters of activity@1#. The scaling of the cross
over time explains the choice of the scaling exponents in
~37!. Settingattl

2n i51 we find at criticality

Na~0,0,L,t,ra,0!;LD~att !
2b/n i

3R̃pbc„0,0,aLL~att !
21/z,1,a0ra,0~att !

D/z2d
….

~40!

The full crossover can be observed if the particular value
the initial density of active sitesra,0 leads to 1!tco!tFSS~as
it was for instance observed for directed percolation@1#!.
Therefore, the first regime@Eq. ~22!# is obtained for 1!t
!tco, the second regime@Eq. ~15!# for tco!t!tFSS, and
finite-size effects take place in the third regime fort.tFSS.

FIG. 13. Test of the hyperscaling relationss5Dn'1n i2n id
andu5D/z2b/n i2d ~see inset!.
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In the case where one starts the simulations with a sin
seedra,05L2D we gettco}LzD/(D2zd). Taking into account
that z,zD/(D2zd) we find thattFSS,tco, i.e., finite-size
effects take place before the algebraic decay of active
ticles starts@Eq. ~15!# and the second scaling regime does n
occur. Furthermore, we can use fort!tFSSthe approximation

R̃pbc„0,0,aLL~att !
21/z,1,a0L2D~att !

D/z2d
…

'R̃pbc„0,0,̀ ,1,a0ra,0~att !
D/z2d

…;a0L2D~att !
D/z2d

~41!

and Eq.~40! reads now

Na;a0~att !
2b/n i1D/z2d. ~42!

Comparing this result with Eq.~22! we obtain the hyperscal
ing relation Eq.~36! as well asa051/aN . In the inset of Fig.
13 we display the data of the corresponding exponents.
hyperscaling relation, Eq.~36!, is fulfilled within the error
bars.

The situation is completely different if one starts th
simulations with a homogeneous particle source. For
stance, a random distribution of particles leads for the tw
dimensional CTTP to an initial densityra,0'0.1703. In that
case the crossover time

tco5
1

at
S 1

aN
ra,0D 21/~D/z2d!

'1.14 ~43!

is too small and the short time scaling regime (Na}tu for 1
!t!tco) cannot be observed. On the other hand, the sca
form, Eq. ~37!, yields for the second regime (tco!t!tFSS)

ra~dr,h,L,t,ra,0!

;~att !
2b/n iR̃pbc„0,0,aLL~att !

21/z,1,a0ra,0t
D/z2d

…

'~att !
2b/n iR̃pbc~0,0,̀ ,1,̀ !. ~44!

Comparing this result with Eq.~15! we get the scaling rela
tion

a5
b

n i
, ~45!

as well asR̃pbc(0,0,̀ ,1,̀ )51. But as can be seen from th
inset of Fig. 12 this scaling relation is clearly violated inD
51 andD52. ForD53 we think that the violation of Eq.
~45! is hidden by the overlapping error bars, i.e., the abo
scaling relation is violated below the upper critical dime
sion, as already observed in previous simulations@4#. Fur-
thermore, the violation of the scaling relation, Eq.~45!, ex-
plains why the well known hyperscaling relation of direct
percolation

u1a1d5
D

z
~46!
2-9
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is not fulfilled for absorbing phase transitions with a co
served field.

It is worth mentioning that this scaling anomaly is n
caused by the particular initial configuration~random distri-
bution of particles!. We have observed the same behavior
a morenatural initial configuration, where the correlations
the active and nonactive sites are not trivial. In this case
start the simulations from a steady state at the critical den
with nonzero fieldh. Switching off the external field we hav
measured the relaxation of the order parameter from the
tial density ra,05ra(rc ,h). For ra,0'0.1 we observe the
same scaling function and the same exponenta as in the case
of a random initial configuration.

A possible explanation of the above scaling anomaly
that the asymptotic scaling regime is so far not observed.
situation is sketched in Fig. 14. In the case of the tw
dimensional CTTP the crossover takes place attco'1.14,
whereas finite-size effects occur attFSS'6000 for L5512.
Thus, the conditiontco!t!tFSSseems to be fulfilled and on
would expect to observe the asymptotic scaling beha
t2b/n uu. But it is known that crossovers span several deca
of magnitudes, usually 5, 6, 7 or even more decades~see, for
instance, Ref.@24# for a recent work on crossover effects f
the same universality class!. In this way it is possible tha
one observes in simulations a smaller exponent~a50.419!
than the asymptotic value (b/n uu50.522). Future work on
larger lattice sizes (L@512) are needed to clarify whethe
the scaling anomaly can be explained by a simple cross
effect.

Finally, we consider the percolation probabilityPperc that
a path of active sites propagates through the system. O
ously, the percolation probability is related to the surviv
probability via

Pperc5 lim
t→`

Pa~ t !. ~47!

FIG. 14. Sketch of the crossover behavior of the number
active sitesNa. For t!tco Na scales astu, whereas it is expected to
decrease fort@tco asNa}t2b/n i. It is possible that a too low expo
nent (a,b/n i) is observed in simulations if one has not reach
the asymptotic scaling regime~long-dashed line!.
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The percolation probability is expected to vanish at the cr
cal density according to

Pperc}drb8. ~48!

Assuming that the survival probability obeys the scali
form

aPPa~dr,L,t !;l2dn iP̃pbc~ardrl,attl
2n i,aLLl2n'!

~49!

we find in the thermodynamic limit

Pperc5 lim
t→`

Pa~dr,t,`!;aP
21~ardr!dn iP̃pbc~1,̀ ,`!

~50!

leading to the scaling relation

d5
b8

n i
. ~51!

Thus the hyperscaling relations, Eqs.~35! and~36!, read now

s5n'D1n i2b8, ~52!

u5
n'D2b2b8

n i
. ~53!

In the case of directed percolation,b equalsb8 due to a
special symmetry under time reversal@20#. In a more general
context one expects that both exponents differ@1#, for in-
stance, in systems with infinitely many absorbing states or
in our case, in systems where a conserved field couples to
order parameter. The number of independent critical ex
nents is therefore expected to be four~e.g.,b,b8,n i ,n') in-
stead of three independent exponents for directed percola
(b,n i ,n'). In order to check this scenario we compare in t
inset of Fig. 12 the spreading exponentd with b/n i . Surpris-
ingly, we observe that both values agree within the error b
for all dimensions, suggestingb5b8. It is possible that the
uncertainty of our estimates hides a tiny difference of b
exponents. A more accurate test of the scaling relationb5b8
could be obtained by a direct measurement of the percola
probability which remains the topic of future research.

VI. CONCLUSIONS

We analyzed numerically the critical behavior of thr
different models exhibiting a continuous phase transition i
an absorbing state. In particular, we introduce a meth
which allows one to consider finite-size effects in the stea
state. It is therefore possible to obtain accurate estimate
the correlation length exponent. Additionally, we determi
the spreading exponents which describe the spreading o
tivity at the critical point. A detailed analysis of certain sca
ing relations shows that usual hyperscaling relations are
filled. Only the activity spreading from a homogeneo
particle source exhibits a scaling anomaly. So far this sca
anomaly is not understood and remains the topic of fut

f
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research. The number of independent exponents due to
scaling anomaly of the exponenta is at least four. In the cas
that bÞb8 it is even 5.

Since the hyperscaling relations, Eqs.~35! and ~36! are
fulfilled, it is possible to connect the SOC avalanche ex
nents to the steady-state exponents of the corresponding
sorbing phase transition:

t r511z1D2
s

n'

511
b8

n'

, ~54!

t t521
D

z
2

s

n i
511

b8

n i
, ~55!

ta521
z

D
2

s

Dn'

511
b8

Dn'

, ~56!

ts511
n i1n'D2s

n i1n'D2b
511

b8

n i1n'D2b
. ~57!
e

ri,

, J
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In Fig. 11 we compare these values with the avalanche
ponents obtained from SOC simulations of the Manna mo
@23,25,26#. All SOC exponents agree within the error ba
with the avalanche exponents derived via the above sca
laws. Thus it is possible to express the avalanche expon
(ts ,ta , . . . ) of SOCsystems in terms of the usual critica
exponents of a second-order phase transit
(b,n' ,n i , . . . ). In this way, the critical state of SOC sand
pile models is closely related to the critical state of an or
nary second-order phase transition.
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@27# S. Lübeck and A. Misra, Eur. Phys. J. B26, 75 ~2002!.
2-11


